Wednesday, 7 June 2017

Moving Average Data Matlab

Mit MATLAB, wie finde ich die 3-Tage gleitenden Durchschnitt einer bestimmten Spalte einer Matrix und hängen Sie den gleitenden Durchschnitt zu dieser Matrix Ich versuche, die 3-Tage gleitenden Durchschnitt von unten nach oben der Matrix zu berechnen. Ich habe meinen Code: Angesichts der folgenden Matrix a und Maske: Ich habe versucht Umsetzung der conv Befehl, aber ich erhalte einen Fehler. Hier ist der Befehl conv, den ich versucht habe, auf der 2. Spalte der Matrix a zu verwenden: Die Ausgabe, die ich wünsche, wird in der folgenden Matrix gegeben: Wenn Sie irgendwelche Vorschläge haben, würde ich es sehr schätzen. Vielen Dank für die Spalte 2 der Matrix a, ich bin die Berechnung der 3-Tage gleitenden Durchschnitt wie folgt und platziert das Ergebnis in Spalte 4 der Matrix a (Ich umbenannt Matrix a als 39desiredOutput39 nur für Abbildung). Der 3-tägige Durchschnitt von 17, 14, 11 ist 14 der dreitägige Durchschnitt von 14, 11, 8 ist 11 der 3-tägige Durchschnitt von 11, 8, 5 ist 8 und der 3-Tage-Durchschnitt von 8, 5, 2 ist 5. Es gibt keinen Wert in den unteren 2 Zeilen für die 4. Spalte, da die Berechnung für den dreitägigen gleitenden Durchschnitt am unteren Ende beginnt. Die 39valid39 Ausgabe wird nicht angezeigt, bis mindestens 17, 14 und 11. Hoffentlich macht dies Sinn ndash Aaron 12 12 13 am 1:28 Im Allgemeinen würde es helfen, wenn Sie den Fehler anzeigen würde. In diesem Fall tun Sie zwei Dinge falsch: Zuerst muss Ihre Faltung durch drei (oder die Länge der gleitenden Durchschnitt) geteilt werden Zweitens beachten Sie die Größe von c. Sie können nicht einfach passen c in eine. Der typische Weg, um einen gleitenden Durchschnitt wäre, um die gleiche: aber das sieht nicht wie Sie wollen. Stattdessen sind Sie gezwungen, ein paar Zeilen zu verwenden: Ich muss einen gleitenden Durchschnitt über eine Datenreihe innerhalb einer for-Schleife berechnen. Ich muss den gleitenden Durchschnitt über N9 Tage erhalten. Das Array Im-Berechnen ist 4 Reihe von 365 Werten (M), die selbst Mittelwerte eines anderen Satzes von Daten sind. Ich möchte die Mittelwerte meiner Daten mit dem gleitenden Durchschnitt in einem Diagramm darstellen. Ich googeln ein wenig über gleitende Durchschnitte und den conv Befehl und fand etwas, das ich versuchte, in meinem Code umzusetzen: So grundsätzlich berechne ich meinen Durchschnitt und plot ihn mit einem (falschen) gleitenden Durchschnitt. Ich wählte die wts Wert direkt an der Mathworks-Website, so dass ist falsch. (Quelle: mathworks. nl/help/econ/moving-average-trend-estimation. html) Mein Problem aber ist, dass ich nicht verstehe, was dieses wts ist. Könnte jemand erklären, wenn es etwas mit den Gewichten der Werte zu tun hat: das ist in diesem Fall ungültig. Alle Werte werden gleich gewichtet. Und wenn ich das völlig falsch mache, könnte ich etwas Hilfe dabei haben Mein aufrichtigster Dank. Die Verwendung von conv ist eine hervorragende Möglichkeit, einen gleitenden Durchschnitt zu implementieren. In dem Code, den Sie verwenden, ist wts, wie viel Sie jeden Wert wiegen (wie Sie ahnen). Die Summe dieses Vektors sollte immer gleich Eins sein. Wenn Sie jeden Wert gleichmäßig gewichten und eine Größe N bewegten Filter dann tun möchten, würden Sie tun möchten Mit dem gültigen Argument in conv wird mit weniger Werten in Ms, als Sie in M ​​haben. Verwenden Sie diese, wenn Sie dont die Auswirkungen von Nullpolsterung. Wenn Sie die Signalverarbeitung Toolbox haben, können Sie cconv verwenden, wenn Sie einen kreisförmigen gleitenden Durchschnitt ausprobieren möchten. Etwas wie Sie sollten die conv und cconv Dokumentation für weitere Informationen lesen, wenn Sie havent bereits. Sie können Filter verwenden, um einen laufenden Durchschnitt zu finden, ohne eine for-Schleife zu verwenden. Dieses Beispiel findet den laufenden Durchschnitt eines 16-Element-Vektors unter Verwendung einer Fenstergröße von 5. 2) glatt als Teil der Curve Fitting Toolbox (die in den meisten Fällen verfügbar ist) yy glatt (y) glättet die Daten in dem Spaltenvektor Y unter Verwendung eines gleitenden mittleren Filters. Die Ergebnisse werden im Spaltenvektor yy zurückgegeben. Die Standardspanne für den gleitenden Durchschnitt ist 5.Moving Average Filter (MA Filter) Loading. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Mittelwert dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, dass der Filter mit 3-Punkt-Moving-Average bei der Filterung des Rauschens nicht viel getan hat. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende Durchschnittsfilter kein Frequenzband von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, der gleitende Durchschnitt ist ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre Seitenleiste


No comments:

Post a Comment